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Abstract

Non-Uniformity Correction (NUC) is required to normalizeaging detector Focal-
Plane Array (FPA) outputs due toftérences in the end-to-end photoelectric responses
between pixels. Currently, multi-point NUC methods requstatic, uniform target scenes
of a known intensity for calibration. Conversely, scenedsthNUC methods do not require
a priori knowledge of the target but the target scene mustyipardic. The new Static
Scene Statistical Non-Uniformity Correction (S3NUC) aitfam was developed to address
an application gap left by current NUC methods. S3NUC rexguthe use of two data
sets of a static scene affiidirent mean intensities but does not require a priori knogéed
of the target. The S3NUC algorithm exploits the random naiseutput data utilizing
higher order statistical moments to extract and correctlfpadtern, systematic errors. The
algorithm was tested in simulation and with measured dafal@nresults indicate that the
S3NUC algorithm is an accurate method of applying NUC. Thherhm was also able to
track global array response changes over time in simulatddreeasured data. The results
show that the variation tracking algorithm can be used tdiptglobal changes in systems

with known variation issues.
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STATIC SCENE STATISTICAL NON-UNIFORMITY CORRECTION

. Introduction

All photodetector arrays $ier from systematic and random noise. On the array, there
are systematic deviations in the microfabrication of thavildual detectors. Deviations in
physical dimensions and material properties lead to dewviain the gain and bias between
detectors. The gain and bias deviations between each deigttbduce a fixed, systematic
noise pattern on the output data. Photodetector arrayssef from random noise in
the detection and digitalization process that can be charaed using random processes.
While random noise can be mitigated with a filter on the outfixeéd pattern systematic
noise requires a separate calibration process for removal.

Extracting and correcting the fixed pattern of gain and b&salions is called Non-
Uniformity Correction (NUC). Currently there are two commmethods of performing
NUC. The two-point method uses data from two calibratedetsrgpf a uniform and
known intensity. The gain and bias corrections producedhaatwo-point method may
introduce and preserve radiometric calibration. The printaawback to this method is
the requirement for the uniform targets of known intensitlgjich are dificult to produce.
The other common NUC methods are scene-based correctidnsh woes not require
calibrated targets. The drawback to scene-based NUC neeihtitht they require dynamic
data sets that are either long enough to average to a comataator a priori knowledge of
how the scene is moving.

A new method of NUC was derived to garner the benefits of prioguadiometrically
accurate gain and bias corrections without the need for kneadibration sources. Static

Scene Statistical Non-Uniformity Correction (S3NUC) iztls higher order statistical



moments to exploit the random noise in the output to extnadtcrrect for the systematic
noise. The noise sources fit within a linear model of a phdtader for which the moments
are calculated. The derived moments of this linear modedye a system of equations
that may be solved for radiometrically unskewed valuesfergain and bias of the detector.
The new method of SSNUC was derived to address down-arrasgl-fm-pixel
deviations, similar to current NUC methods. Using the sam&gons applied in a cross-
array configuration, the algorithm can track global vaoiatin an array’s gain and bias.
The S3NUC and variation tracking algorithms were testedhmukation and with real data.
The results produced indicate that SSNUC can produce aecgain and bias corrections

without the need for a priori knowledge of the target source.



1. Background

2.1 Introduction

In a typical camera system, an image is created from photalfected at an aperture
and focused onto a photodetector Focal-Plane Array (FPABJ4 The FPA converts
incident photons into electrons that are then digitized byAaalog-to-Digital Converter
(ADC). Systematic noise is introduced from deviations ie tpin and bias of the
FPA and any system amplifiers [17]. The random arrival of phstat a photodector
is known to follow a Poisson random process [5]. Random nigissso introduced in
the collection and digitization processes and the noisevisl well defined probability
distributions. The random noise is commonly removed usihersi or averaging. To
remove the systematic deviations from a photodetectioesyne of two NUC methods
are commonly employed. Additionally, gain and bias can geaover time which creates
operational problems in some systems, particularly Lag¢e®ion and Ranging (LADAR)

systems.

2.2 Digital CameraModel

2.2.1 Optics.

All the cameras used in the research conducted had at leatrmscollecting photons
at the aperture. The lenses enable the aperture to be mgeh tarcollect more photons
from the incident field without requiring a large detectogaf4]. A larger aperture also
allows the optical system to have a smaller minimum resdévdistance. Two objects
closer together angularly than the minimum distance willitdistinguishable from a
single, larger object. The minimum resolvable angularagise in radiangy, is calculated

from the aperture diameter in metel,and the wavelength of light, using



9= 1.220%. (2.1)

Thus a larger aperture diameter will produce fields with $ena¢solvable angular distance
and have a greater degree of resolution [4]. The minimumvable distance also dictates
the spacing between elements on an array needed to fullylsahegfield produced by
the optics. In general, photodetector arrays are designecket the resolvable distance to
fully sample the intensity field but some systems do not nfeetequirements and spatially
under-sample the field [4].

2.2.2 Photodetector Arrays.

Photodetector arrays are comprised of many individual qutetectors, or pixels,
typically arranged in a rectangular array defined as a FPAerdlare many dierent
types of photodetectors available foffdrent operating wavelengths and applications. The
three cameras used in the research conducted have arragsupaaf Complementary
Metal-Oxide-Semiconductor (CMOS), Charge-Coupled Dei€CD), and Avalanche
Photodiode (APD) sensors. Both CMOS and CCD sensors arersadmf a single p-
n junction photodiode [31]. The photodiode is operated \aitteverse bias to produce a
depletion region in the junction. Photons incident on thaek&on region free electron-hole
pairs which travel through the diode generating a curreattithcollected into an electrical
charge. The electrical charge is transferred by logic g@atélse digitization circuit. The
difference between CMOS and CCD sensors is the specific confguictlogic gates
used to transfer the charge level on the p-n junction [12]. G3Viarrays typically have
additional circuitry within the FPA compared to CCD arrajifie additional circuitry can
be used to suppress fixed pattern noise [12].

APD sensors are similar in operation to CMOS sensors but ciaie\ee a higher gain
ratio of photons collected to electrons produced [14]. Fumentally, the APD is a diode

with a higher reverse bias applied to drive it into the avellenbreakdown mode. The



higher gain allows APD sensors to produce images from lon&nsity incident fields.
This saturates the depletion region with election-holes@8]. As the electron-hole pair
are freed and begin to move, the strong reverse bias acesldbee carriers to the point
where they have enough kinetic energy to excite more carrine quantity of electrons
excited by a single photon is defined as the APD gain and istkgme on both the physical
parameters of the device and the amount of reverse biassati@ginction [14].

FPAs can have from a few thousand individual photodetettomsany millions. With
large arrays of detectors, manufacturing each individetdctor to be identical to the others
becomes a dlicult process. Deviations in physical dimensions and neltproperties lead
to deviations in the gain and bias of the detectors [17, 2]L, 23

2.2.3 Analong-to-Digital Conversion.

The ADC in a camera is responsible for converting the cadéatharge from the
photodetector into a digital or discrete value. The coneerguantizes the analog charge
input into a discretely sampled output. The sampling predesoduces an amount of
guantization error that is a function of the precision of #i2C used [7]. The error takes
the form of systematic noise in the output signal as the érafunction of the input signal

value [17].

2.3 Random and Systematic Noise

2.3.1 Photon Shot Noise.

Most types of photodetectors collect photons for a fixedqukedf time to generate
a measurable charge level. Over that period of time, thectteteollects and stores
the charge from all arriving photons. Photon arrivals ar¢hematically represented as
impulse functions [4]. The mathematical operation of theedr collecting the photons
is integrating over the impulses for the fixed period of tiwad)ed the integration time of

the sensor. As the integration time grows longer for a detellecting from a constant



source, the average amount of charge per period increaadsng in a higher output. The
same relationship exists for shorter integration timesltes in lower outputs.

A significant source of noise in any photodetector systenputuis the &ects of
photon shot noise [2, 11, 22]. Shot noise is a result of thedewoi process that characterizes
how photons arrive at a photo detector [5]. The Poisson gmoiseused for characterizing
a series of impulses arriving at random time intervals afiawer a fixed time period, there
will be an expected number of impulse arrivals. The rate dtlwvthe impulses arrive is
defined asi(t) and the mean value of impulses to arrive between the twostifrendt; is

defined to bet and is calculated using

t2

- f A(H)dt. (2.2)

fa
Given 1 € R, the probability thatk € N impulses arrive during the time interval,
P(K,t1,1,), is defined by a Poisson distribution [5] which has a densitycfion in the

form

1 (1) dt e K
P(K, ty,t) = (f K ) exp(—f/l(t)dt] %e (2.3)

t
Assuming that photons behave like particles in this casethadtheir arrival in a

time interval is statistically independent from the pha&aurriving in a diferent, non-
overlapping interval, then the Poisson process can defio®plarrivals at a photodetector
during an integration time. The random nature of the arriraks can distort images
collected with photodetectors. For an object with a cortsta@an photon emissiorK
will be a constant but the output value of the camera will viemgdomly according to
probability density function defined in (2.3).

2.3.2 Clock Noise.

Clock drift and jitter are both errors in the clock signalttha cameras, defines the
integration times [12, 32]. Clock drift, also called wandisrdefined as a slow trend of

change in the clock frequency. The slow change can add upit@weeasing deviation from



the specified clock frequency and the actual frequency. lergel camera operation,
drift will slowly change the integration time of the detectd a camera images a constant
source and if the drift slowly increases the integratioretithe output images will slowly
get brighter. The same relationship applies to the revétisation.

Clock jitter is defined as a fast change in clock frequency].[3Zhe threshold
between drift and jitter is defined to be changes occurrintOblz. Where drift is often
systematic and has a clear trend, jitter is usually randder & quantified by calculating
the diference between the measured period of the clock per cycléhendieal, fixed
period between cycles. Thefects of jitter become more prevalent as clock frequency
increases[1]. Theftects of jitter on a camera appear similar to photon shot naoiseat
the output is fluctuating randomly around a mean value asritegration times change
randomly. In that aspect, clock jitter is treated as an add#ource of random noise.

2.3.3 Other Sources of Random Noise.

There are other sources of noise thieet the output of any camera system. One
such source is thermal noise that is produced by any detdwbrs not at absolute zero
(OK) [22]. The noise is a product of fliusion current that is generated by p-n junction
above K [29]. The thermal noiseftects the charge collected by the photodetector prior
to conversion to digital values and is an additive sourceax$en Thermal noise can be
reduced, but not eliminated, by actively cooling the phetedtor.

Some but not all random sources of noise in camera systenes \Weall defined
probability distributions. For the purposes of the reseam@nducted, all random sources
of noise aside from photon shot noise are assumed to be\aduttthe final output data.
The assumption is based on the fact that sources such asafrerchclock jitter noise are
additive sources [1, 3]. Grouping together many randomates allows the application
of the central limit theorem. With many random variableswibite means and variances,

the distribution of the sum of the random variables appreach Gaussian, or Normal,



distribution [5]. Applying the central limit theorem to thrandom noise sources in a
camera allows the assumption that the sum of all non-Poies@e produces Additive

White Gaussian Noise (AWGN) in the final output data.

2.4 Current Non-Uniformity Correction Methods

As indicated in Section 2.2.2, FPAs will have detectors wilitifierent responses due
to deviations in the manufacturing process. The nonunifgam and bias values over the
individual detectors will result in a fixed pattern imposedtbe output data [17, 21, 23].
The fixed pattern cannot befférentiated from the target scene and is undesirable in most
applications. Additionally, the random noise complicaties process of extracting and
correcting for the pattern. Techniques for NUC have beeatetefor extracting the fixed
pattern and compensating for the random noise to corredutpt data.

24.1 Multi-Point NUC.

One widely used method of NUC is collecting data with an aofeyperfectly uniform
photon source [21]. One-point correction utilizes the fiet if the source is uniform,
any fixed pattern seen at the output is due to gain and biastt®aw in the array. |If
the intensity of the photon source is known, the fixed pattamm be further solved for
a direct radiometric relation from photons to digital outpalue. The one-point method
was further improved to a two-point method using two unif@aurces of dierent and
known intensities. In both methods, the random noise isa@est out before correction to
remove its &ects. The two-point method has been experimentally verifiechany types
of sensors and has become a standard technique for NUC [8bnhe FPAS, the response
over diferent intensities can be nonlinear, necessitating a rpailtit NUC to accurately
correct the output [25].

24.2 Scene-Based NUC.

Another subset of NUC methods use scene-based informatiacethe fixed pattern.

One method relies on the concept of constant statisticdB]0 Constant statistics assumes



that a single pixel's response over time will have a constagdn and standard deviation.
From the mean and standard deviation, the fixed pattern ®isetracted and used to
correct the output data. For the constant statistics assomsgo be valid, the scene being
imaged cannot be stationary for too long within the dataXelt [The averaging required to
compute the mean and standard deviation has the additiffeel ef removing the random

noise present in the data.

A different scene-based method of NUC utilizes global motiorkingcbetween
frames in a data sequence [8, 11]. If an object with a constéensity is being imaged
and is being optically shifted to all detectors on the artlagn the detectors have all been
subject to the same intensity at some point in the data stréamraw data is first filtered
to remove the fects of random noise [11]. Then, combining the data streawsadhe

objects movementtectively creates a uniform reference to use to extract tleel fpattern.

25 Variation Over Time

Variation in the gain and bias of an FPA over time can be ate$akternal conditions,
such as temperature, or a result of systematic errors inytstera [9]. In cameras, the
variation over time can continuously produce systematisenthhat will not be corrected by
a one-time NUC. In some applications, such as LADAR, theatam over time produces
additional éfects beyond systematic noise [28].

One particular system being used in the research condigtgdAdvanced Scientific
Concepts (ASC) “TigerEye” 3D Flash LADAR system. LADAR sgsts have additional
operational characteristics beyond that of a photodeteztmera. In the basic operation
of a Flash LADAR, a pulse of laser light is sent towards thgeaf22]. The pulse reflects
off of the target and returns to the LADAR’s aperture. A measergnof the time from
the laser pulse emission to its return to the array is usedltulate the range from the
LADAR to the target. Using the TigerEye’s 128128 APD array, each pixel can produce

an independent range measurement to build a three-dinmathgioage [13, 15, 30].



One of the possible sources of error in the TigerEye systefroma the transient
response of the voltage regulator supplying power to the Aday. On a previous,
developmental version of the APD array, each pixel had a darkent demand of 14.4
nA. Across all 16384 pixels, the array has a combined dark stuidemand of 0.23&A
[28]. If the array were to receive a 41 return pulse from a laser, assuming the APD
array has a constant gain of 10 and that 52% of the energy &bimtained in 5 samples,
the current demand of the array will increase to 4. This gain by a factor of 4169
over the dark current will translate to the voltage regul&i@ving to compensate for the
demand in an extremely short time frame of% In the current version of the Tigereye,
the voltage regulator and APD specifications are neithettified nor able to be removed
for testing. However, it is assumed that the APD array behave very similar fashion
and the voltage regulator cannot provide such a short gahgsponse.

In a previous experiment conducted with the developmemrtaion of the APD array,
a halogen lamp with a hemispheric reflector was used to peo&idear-constant stream
of photons to each pixel in the APD array. The LADAR was runhwiit the laser timing
system on and range-samples were collected for fifty-fo@rlapping ranges. Another
prior experiment had showed that the APD array is biaseditliactivation rather than
the start of collection for each range-sample. The propdibtyved the overlapping range-
samples to have a significant factor of overlap [28]. The lapsenabled a concatenation of
the sets of data to show a long term trend in the recorded dateem in Figure 2.1. There
is a significant amount of short-term variation that showalamost periodic and sinusoidal
trend. On a long-term trend, the values slowly drop in a bielaimilar to an exponential

function [28].

The previous work attributed the main cause of the variatiiotie voltage regulator
circuit and its transient response. Variation in the amofiabltage bias applied to the APD

array will result in a variation in the gain of the array andlwesult in a noisy data trend

10
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Figure 2.1: Overlay of llluminated Conditioned ResponsesHifty-Four Ranges, Used
with Permission [28]

compared to the expected constant trend. Additionallytythe of variation above would
contribute to ranging error in that an object of some distaangay would be measured to

be farther than it actually was from the LADAR [16, 28].

2.6 Constraintsto Current Non-Uniformity Correction Methods
The primary drawback to one and two-point NUC methods is dgirement for

uniform sources of known intensities [11, 21]. The equiptrequired includes a source
as well as any additional optics, mirrors, and electroni€ke cost of the equipment is
generally high and the complexity of the setup typicallytniets the method to laboratory
settings [8]. Scene-based NUC methods generally do noireegioy additional equipment.
However, without knowing the exact intensity of the scenelgect being imaged, scene-
based methods cannot preserve the radiometric accuratye @onversion of photons to

digital values for the detector. For some applicationsiommetric calibration is required.

11



Therefore, an ideal NUC method would provide radiometricuaacy preserving gain and
bias corrections without the need for a priori knowledgehef target scene. Additionally,
the current NUC methods may not be applicable to a pulse LAB&em due to the way

they operate.

12



[11. Methodology

3.1 Introduction

The fundamental principle of S3NUC is that is utilizes theoemproduced by the
random noise to correct the systematic errors in the systém. newly derived S3NUC
method relies on a linear photodetection and digitizaticodeh previously defined by
Hayal et al [11]. The model uses the sum of two statistical distribudioa Poisson
distribution for the photon arrival and a Gaussian distitoufor other sources of noise.
First, second, and third order central moments of the madgilglition can be analytically
derived. Using two sets of data atffégirent photo-intensities, the moments produce a
complete linear system of equations for calculating the gaias, photocounts, and noise
variance of the photodetector.

Other current NUC methods either do not use a statisticslbagseroach [24, 26, 27]
or only use the first and second order moments in their alyar[tl0, 18]. Furthermore,
most methods require a filter or averaging to remove randasemothe FPA output before
addressing the systematic noise. The S3NUC algorithmadstgploits the random noise
using statistical models to solve for the systematic noissgnt in the output.

Two different implementations of the algorithm were implementedhe Tirst
implementation extracts the fixed pattern noise from a FPAis Tmplementation was
evaluated with simulated data and then applied to dataatetlefrom CMOS and CCD
based cameras. The second implementation tracks theioariegnds in both the mean
gain and bias of the FPA over time. This variation trackingl@ementation was also
evaluated with simulation data, then applied to CMOS and C@mera data. In addition
to the camera tests, it was applied to a LADAR system which kmasvn to exhibit gain

variation over its ranging interval.

13



3.2 Terminology

To maintain a consistent use of terminology, certain termesdefined as follows.
Each image in a data set is referred to as a frame. Each fraroenigrised of many pixels
with each pixel corresponding to the output from a singletptietector in the FPA. In the
TigerEye LADAR data, a “cube” of frames refers to twenty festaken consecutively and
starting after a defined period of time after the laser pulse @mitted. In the LADAR data
collected, consecutive cubes of frames all start after éineesperiod from the laser pulse.
A “down-array” implementation, or S3NUC, refers to takifgetmoments of a vector of
data points for a single pixel location on the array. The masiare used to calculate gain
and bias estimates to correct images. A “cross-array” implgation, or variation tracking
implementation, refers to taking the moments of all the gaiats in a single frame. The
results of variation tracking are the mean gain and biasegdior the whole FPA over time.
The expectation of a random variable is representds] ds Statistical means are denoted
with the bar above the variable, such/gxbeing the mean of the random varial#le The
variance is represented @3 with a subscript to define which variable it is the variance of
such asr3 for the random variabl@. Similarly, the skewness of a variable is represented

asy with a subscript, such as, for the random variablé.

3.3 S3NUC Derivation

The following linear model is used for a photodetector. Thgital output value D,
which is a single digital value from one pixel that is a funatiof the gain of the system,
G, multiplied by the photocount incident to the pixé&, plus the biasB, and a zero-
mean AWGN termn. The AWGN is assumed to be zero-mean as any non-zero mean is
indistinguishable from the bias valuB, The AWGN represents the accumulations from
all electronic noise after the detector, such as the ADC rda@dssumed to be independent

of K. The equation for the resulting model is

D=GK+B+n. (3.2)

14



Each pixel's digital valuepD, is assumed to be independent from all other pixels on the
array. The gainG, is also assumed to be a constant value, corresponding teear li
photoresponse.

For the sake of clarity, all derivations are made for a sipgtel. In implementation,
the calculations are extended in parallel to all pixels i @nray. To implement NUC on
an array, it is necessary to solve for the gain, bias, and @nence of the AWGN. The
photocount is target scene dependent and is assumed ta folRPoisson process model
[5]. To generate a set of well posed equations, the first,regand third order statistical
moments are required.

3.3.1 Derivation of the First Moment.

The first order moment, or mean, of the data is defineld asd is calculated by taking

the expectation of Equation (3.1)
D = E[D] = E[GK + B+n]. (3.2)

The photodetection process model is a linear combinatiomvofrandom variables and
two deterministic values. The expected value of a detegnvariable is itself. The

expectation calculation is a linear operation and can becexd to
D = GE[K] + B + E[n]. (3.3)

The mean of the AWGN is assumed to be zero and the mean of thegomt, K is
unknown but deterministic. Substituting these values Eqaation (3.3), the mean of the
data reduces to

D =GK + B. (3.4)

Equation (3.4) is the first of the equations required for a piete system used in SSNUC.
3.3.2 Derivation of the Second Moment.
A second equation is generated from the second order cembrakent, or variance, of

the data. The variance of the datg, is calculated from expectation of the square of the
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data mean subtracted from the data
o2 = E[(D - D)?. (3.5)
Equations (3.1) and (3.4) are substituted into Equatids) (8. produce
o? = E[(GK + B+ n— (GK + B))?. (3.6)
The bias terms are cancelled out and Equation (3.6) redaces t
o3 = E[(GK + n—GK). (3.7)
The polynomial inside the expectation operation is expdndgroduce
02 = E[G?K? - 2G?KK + G?K? — 2GKn + 2GKn + n?. (3.8)

All of the deterministic terms can be pulled out of the expion and Equation (3.8)

reduces to
o2 = G?K? — 2G?’KE[K] + G?E[K?] - 2GKE[n] + 2GE[Kn] + E["?].  (3.9)

Employing the mean value of the AWGN, zero, and the photocmean further reduces

Equation (3.9) to
03 = G?K? — 2G?K? + G?E[K?] + 2GE[Kn] + E[n?]. (3.10)

In Equation (3.10), three expectation operations rematie. first,E[K?] is the second

order moment about the origin of a Poisson random varialdasadefined to be [6]
E[K?] = K2 + K. (3.11)

The second expectatioR[Kn], is the joint expectation oK andn. The random variables

are assumed to be independent, so the joint expectationesdol
E[Kn] = E[K]E[n]. (3.12)
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The final remaining expectation from Equation (3.10E[#?], which is a second order

moment about the origin of a Gaussian distribution and isxddfio be [19]
E[n?] = o2 + E[n]2. (3.13)

In Equation (3.13), the noise variance;? is an unknown constant. Substituting

Equations (3.11), (3.12), and (3.13) into Equation (3.10ypces
02 = G?K? - 2G?K? + G3(K? + K) + 2GE[K]E[n] + ¢ + E[n]%. (3.14)

The AWGN meanE[n] = 0, so two terms drop out in Equation (3.14) and the expression

in parentheses expands to
o2 = G?K? — 2G?K? + G?K? + G’K + o2, (3.15)

The three terms in Equation (3.15) wik? cancel and the variance of the data is reduced
to
0 = GK + 02, (3.16)
Equation (3.16) is the second equation required for the S3Nystem.
3.3.3 Derivation of the Third Moment.
The third order central moment, skewness, is used to genématthird equation.
The skewness of the datgg, is defined to be expectation of the cube of the data mean

subtracted from the data and divided by the standard dewiafithe datagp,

=€)

The standard deviation of the data is a known, determiniatice and can be removed from

(3.17)

the expectation operation to produce

Yo = —EL(D - D). (3.18)
9p
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Equations (3.1) and (3.4) are substituted into EquatiatB8j3o produce
1 —
¥p = —E[(GK + B+ n - (GK + B))’]. (3.19)
0p
The bias terms cancel out and Equation (3.18) reduces to

Vb = %E[(GK +n-GK). (3.20)
0p

The polynomial inside the expectation operation is expdrdegield

1 - — — — —
yo = — E[G*(-K?®) + 3G®°K?K - 3G°KK? + G°K* + 3G”K*n — 6G°KKn
o

D (3.21)
+3G?K?n — 3GKN? + 3GKn? + n°].
Once again, the deterministic values can be pulled outs&lexpectation operation and all
joint expectations can be split similarly to Equation (3.fi2produce
Vb = %(G%—K_S) + 3GK2E[K] - 3G°KE[K?] + G°E[K®] + 3G*K2E[n]
b (3.22)
—6G2KE[K]E[n] + 3G’E[K?]E[n] — 3GKE[n?] + 3GE[K]E[n?] + E[n%]).

All AWGN means are zero as a nonzero mean would be indetetenfiraan the bias, so the

equation reduces to

Vb = ig(GS(—K_3) + 3GK2E[K] - 3G°KE[K?] + G°E[K?] — 3GKE[?]
9 (3.23)
+3GE[K]E[n?] + E[n%)).

The photocount mean has been defineld asd is substituted in along with Equations (3.11)
and (3.13) yielding
1 - - - - — —
¥o = —(G*(-K®) + 3G°K® - 3G’K(K? + K) + G’E[K®] - 3GK o2
9D (3.24)
+3GK o2 + E[n%)).
In Equation (3.24), there are two unknown expectati@{#>] and E[n°]. For K, a
Poisson random variable, the third order moment about tigegnas determined to be [6]

E[K?] = K3 + 3K? + K. (3.25)
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The third order moment about the mean for a Gaussian randoiable, such a®, is
determined to be [19]
E[n%] = 3E[n]crﬁ + E[n]3. (3.26)

Substituting Equations (3.25) and (3.26) into Equatio@43produces
1 - - - - — - - =
¥p = —(G*(-K®) + 3G°K® - 3G*K(K? + K) + G*(K® + 3K? + K)
7D (3.27)
—3GKo? + 3GKa2 + 3E[n]o + E[N]®).
The zero mean of the AWGN terms and the expressions in paseghare expanded to
produce
1 - - - - - -
yo = —(-G°K® + 3G°K® - 3G°K® - 3G%K* + G°K® + 3G°K?
9p (3.28)
+G°K — 3GK 2 + 3GKo2).
All similar expressions are combined and several termsetand to reduce the equation
to _
_GK

Yo = —. (3.29)
Op

Equation (3.29) along with Equations (3.4) and (3.16) fdnmhasis for the SSNUC system
of equations. The system of equations is shown in Table & %olve for all of the unknown
quantities,G, B, K, o2, two data sets with dierent intensities are required, generating a

complete system of six equations in five unknowns.

Table 3.1: S3NUC System of Equations

Moment Equation

D=GK+B

2 _ G2K + 42
og = GK + 07,
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3.3.4 Derivation of the Fourth Moment.

In the model in Equation (3.1), there are four unknowfs B, K,aﬁ, in three
equations. To produce the fourth equation, a fourth momeess kurtosis, may also
be derived. However, during simulation, the method regueecessively large data sets
to produce precise enough results to be useful. Tens ofomdllof frames of data were
required. The reason large data sets are required comeghHeosmall value of the excess
kurtosis and the comparatively large standard deviatiothé estimates of the excess
kurtosis.

The equation for the excess kurtosi§;, of the model in Equation (3.1) was derived
to be

G

4
Op

Ko (3.30)

Using the excess kurtosis equation with the equations iteTal, there are four unknown
variables and four equations in the system. In practicegXoess kurtosis is small, a few
hundredths in value. However, with a finite set of data poitite excess kurtosis is an
estimate of the actual amount of excess kurtosis and hasraedef uncertainty. Data
was simulated according to the model in Equation (3.1) fareasing sample sizes. At
data sets in excess of 100,000 samples in size, the staneldedidn of the excess kurtosis
calculated from the data was significantly large compareké@xcess kurtosis value. This
translated to gain estimates with a low degree of precisidhd point where the algorithm
could not produce consistent estimates using the saméengtagiues. Results from data
sets with 10 samples improved performance but at that size, the algorishno longer
practical. Therefore, the method of using a single datarstlze excess kurtosis equation

from Equation (3.30) was not tested further.

3.4 Method of Serial Calculation of Moments
The direct method of computing moments for a finite set of dat® load all the

data points into memory and use a summation formula. For $3Nke amount of data
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required, especially for cameras with a large number oflgjx@an exceed the memory
available on most computers. To alleviate the memory buodérading all of the required
frames simultaneously, the moments are computed via al sdgiarithm described by
Dr. Terriberry [33]. The algorithm is based on calculatitg tmoments of a seX by
splitting it into two partitions X* and XB. For this algorithm, the partitiod is defined
as all the samples that have arrived prior to the current éintethe seB is a single, new
sample. As the partitioB is only one value, it's mean is the same value as itself, aind al
higher order central moments have a value of z&ras defined as the total sample size of
A andB combined N8 is the sample size d and has a value of 1 and thus, the sizé\pf
noted asN” in the original equations [33], has a sizeMf- 1. Substituting these values
into Dr. Terriberry’s equations produces a set of updatmtdas for computing the three
moments needed for S3NUC. In Equations 3.31-3x35is the incoming sample from the

setX, and all variables with a with a prime notation are valuegtiernext iteration [33].

N=N+1, (3.31)
§=XB—p, (3.32)
o=+ %, (3.33)
Mg = M + 530 1,31(2'\' ~2) 3M|\j5, (3.34)
M} = M, +62(Nr\_1 ) (3.35)

The implementation of this method begins with 4, M,, and M all set to zero.
Equations 3.31-3.35 are looped through and at the conclagieach iteratiory’, M/, and
M; update tqu, M, and M3 respectively for the next iteration. At the conclusion of th

loop, the mean of the s&, ux, the varianceg%, and the kurtosisyx can be calculated
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using

Hx = {4, (3.36)
M
2 _ M2
% = o (3.37)
Yy = ‘/NLV'? (3.38)
M,

The serial method reduces the computations per iteratismmdo simple arithmetic
that is readily computed in parallel using Graphics Praogddnit (GPU)s. The algorithm
loads a single frame of data and a set of sums for each pixebsrelated in parallel using
Equations 3.32-3.35. The next frame replaces the previaussfin memory and the set of
sums are updated until all of the frames have been proce$bedesultant set of sums is
then used to calculate the moments for each pixel in the éatasgng Equations 3.36-3.38.

This same method can be extended to arbitrary order mondits |

3.5 System Solution

The S3NUC system of equations in Table 3.1 has three eqgaimhfour unknowns.
To generate another set of equations, two data setdfefeit photo-intensities are used.
The second set of data adds one new unknown value but supimeEs more equations.
With five unknowns and six equations, the system is overraeted and the unknowns
can be solved. The first data sB,, is used as the reference and is defined to have a total

mean photocounkp 1o, of a mean valug

Koot = K. (3.39)

The second data sel),, has a diferent mean photocount due to thefelience in
intensities between data sets. The medieince in photocounts is definedss. If D;
is the darker of the two data setsT,( will be positive. IfD, is darker,A_K will be a negative

value. The sum of multiple Poisson random variables is atéssBn [6] and the total mean
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photocount foD,, K_DZTOt is the sum of the mean reference and the mefierénce
Ko,Tot = K + AK. (3.40)

Substituting the photocounts into the original model frogu&tion (3.1) yields models

for both sets of data

D, = G(K) + B+n, (3.41)

D, =G(K + AK)+B+n. (3.42)

Using Equations (3.39) and (3.40) in conjunction with theamevariance, and skewness
formulae from Equations (3.4), (3.16), and (3.29), closedifexpressions for the moments
for both data sets can be generated. Borthe meanp, variance,a%l, and skewness,

Yp,,» €quations are

D; = GK + B, (3.43)

o2, = GK + 2, (3.44)
GK

YD, = 3 (345)
O'D1

Similarly, the meanD, variance;r'gz, and skewnessp,, equations foD, are

D, = GK + GAK + B, (3.46)
o3, = G?’K + G?AK + 02, (3.47)
G3K + G3AK
Yo, = ————. (3.48)
0'D2

The system of equations, with two data sets, has five unkno®ns, K, AK,
ando?, so it is over-determined. An over-determined system wiliquce multiple sets
of solutions for the unknown variables. In this systely, B, and o2 each have two
solutions that are produced. The gafh, it is equal to the dference between the two

variances in Equations (3.44) and (3.47) divided by tleténce between the two means
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in Equations (3.43) and (3.46)
2 2

=" o
D, - D1

With the gain determined, the mean photocouﬁ’edénceAT(, can be solved for from the

(3.49)

difference in the means in Equations (3.43) and (3.46) divideddgetermined gain from
Equation (3.49) o
— D2-Dy
AK =
G

. (3.50)

Using the determined gain, the mean reference photocKumian be calculated from the

product of the skewness and standard deviation flaraubed divided by the gain cubed

3
)/DlO-Dl

K= o

. (3.51)

The bias,B, can be calculated from the product of the determined vadfielse gain and

mean photocount, subtracted frddy
B = D, — GK. (3.52)

Finally, the noise variancez?, is calculated from the product of the determined gain

squared and the photocount count subtracted from the dagega fromD,

0% =0} - GK. (3.53)

n:

Because the system is over-determinedifpB, ando2, there are alternative solutions

available using calculations from the second set of data.tfitee alternative equations are

3 3A K

—  vp,0p5, —G°AK
K=2 Dst , (3.54)
B =D, - GK — GAK, (3.55)
o2 =g - GK - G2AK. (3.56)

Equations (3.54), (3.55), and (3.56) will theoreticallyogpuce the same values as

Equations (3.51), (3.52), and (3.53) but in practice thalteswill be less precise. In

24



practice, the values for the unknowns will be estimates etthe values with an amount of
error between the estimate and the true value. Equatiob4)(33.55), and (3.56) require
the use of the estimate fatK which introduces error not present in Equations (3.51),
(3.52), and (3.53). The error results in less accurate astisproduced foK, B, ando?
and therefore, Equations (3.54), (3.55), and (3.56) areised in S3NUC.

The derivation of the S3NUC system of equations may be impided to examine
gain and bias deviations in imaging array data for tw@edent purposes. The first
implementation, the down-array analysis, produces estisrad the individual gain and bias
values for each pixel in the array. To implement, many fraofegata must be collected
for both data sets. The scenes being imaged do not need toifoenutbut they should
change as little as possible to achieve an accurate statisstimate. For each data set,
the vector of values being used are from one pixel from alinfa of data. Applying
the S3ANUC equations to the pixel's vector of values will pdava gain and bias estimate
for that particular pixel. The application can be repeataddil pixels in the array to
estimate gain and bias values for every pixel. These estBrrafy be used to correct the
nonuniform, fixed pattern noise present in the output daltés implementation, including
the correction, is referred to as S3NUC.

The second implementation, the cross-array analysis, upesd estimates of the
average gain and bias values across the array for a pairroéfaln a pair of frames, the
target scene is identical withfierent photo intensities. The data points used to calculate
the moments are all of the pixels across each frame. Mométite frames are used in the
S3NUC system of equations to solve for the average gain aslvailues for the pair of
frames. If multiple pairs of frames are collected sequdlgtiatime and analyzed in order,
the gain and bias values can be tracked over time. In systdmasevthe gain and bias are
known to vary over time, the trend of variation can be usedtoect the output data. This

implementation is referred to as the variation trackingpatgm.
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V. Results

4.1 Introduction

The first step to verifying the application of the S3NUC equag was to examine the
trade space between precision, accuracy and sample sipesifwilations were conducted
to test the precision and accuracy of the gain and bias gstsnwver a range of sample
sizes. The number of samples required to achieve quaétatgood estimates were not
prohibitively large for many applications. To verify the $3C equations could be used
to apply NUC, a down-array analysis was performed over plelsets of simulated data
and the estimates were used to correct the image. The saiysianeas applied to data
collected with a CCD camera. The S3NUC equations were attedan a cross-array
analysis to verify variation tracking performance. Theattqns were tested with simulated
data over a variety of eierent combinations of trends and the method was able to peodu
accurate trend estimates compared to the truth. Variatemking was also applied to
CMOS camera, CCD camera, and LADAR data. The results agrgkgwevious research

in the area.

4.2 S3NUC Testing

4.2.1 Simulation Testing.

Before testing with measured data, a series of simulates e conducted using
MATLAB. To test the precision of the estimates provided bg ®3NUC method, two
sets of data were generated according to Equations (3.4iLj3a#2). Each data sample
was generated from a mean photocouﬁx,using a Poisson random number generator
function. For the second set of data)k constant value, equal to half the valuekafwas
added before the random number generation operation. THeMWas generated using a

Gaussian random number generator with a specified varidimnegesimulation was run over
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1000 independent data sets. For each set, the equationslen3[a were used to estimate
the gain and bias. The mean gain and bias estimates were tenijpom the estimates
from the 1000 data sets to assess the average accuracy @NkhESnethod. Additionally,
the standard deviation of the 1000 estimates was calculatadsess the precision of the
estimates.

The simulation ran across 100f@rent data set sizes, spaced on a logarithmic scale
from 1 to 100,000. The estimation was repeated over threesaifK, 10, 100, and 1000
to asses theffects of a changing photocount on the estimates. Accordinigetd®oisson
model, a higher mean photocount equates to a higher variante actual photocount
values which doesfBect some of the estimates. Futhermore, a fourth simulatiag w
conducted including an 8-bit ADC quantization of the getedtaata prior to the computing
the moments. The simulation with the ADC ha# aalue of 100.

For the gain estimates, mean estimates are plotted oventheasing sample size
using the Log-Squared Error (LSE) of the mean estimates showigure 4.1(a). The
three tests without the ADC show a similarly decreasingdrenerror over increasing
sample size. The data set with the ADC shows that it reachesch tower error value
compared to the other data sets at most sample sizes. Howagéa sample size of 4,0
the LSE value plateaus at a value of approximately8 indicating that the quantization of
the ADC limits the accuracy of the gain estimate.

The standard deviations of the gain estimates were plotedyRelative Standard
Deviation (RSD) which normalizes the standard deviatiortp the mean estimated value,
u using the equatiofiRSD = % x 100. The RSD plot of the gain estimates is shown
in Figure 4.1(b). The RSD plot shows that after a sample sizpproximately 10, the
different photocount values and the inclusion of the ADC do ffetathe precision of the
gain estimate. The lack of change is a result of the way theéggbant is divided out in

Equation (3.49). This eliminates the extra variance froghar mean photocounts.
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Figure 4.1: shows the Log Squared Error plot of the mean gstimates in (a) and the
Relative Standard Deviation of the estimates in (b).

The same analysis which was applied to the gain estimateala@applied to the bias
estimates. The LSE plot of the mean bias estimates in Fig@(@)shows that diering
mean photocount values dfiect the bias estimate. The lower valuesfoproduced more
accurate bias estimates across nearly all sample sizaegttean approximately 100. The
data set with the 8-bit ADC showed a trend similar to the gatmeates in that it produced
a more accurate estimate early on but the error stoppedad@ageafter a sample size of
approximately 1€ The RSD plot of the bias estimates in Figure 4.2(b) showsnilai
trend in that the data sets with lowisrvalues producing more precise estimates. The set
whereK = 1000 does not show a clearly decreasing trend. This indi¢hg in situations
with high photocounts, S3SNUC may not be able to producebigiastimates of the bias.
This is due to the way the photocount is additive relativeht® bias in Equation (3.1).
Being additive, the additional variance that comes withghlr mean photocount cannot
be eliminated in the same way that it is from the gain estimagalitionally, the addition
of the ADC further reduced the bias RSD for situations with §ame mean photocount.
The reduced RSD is due to the quantization of the ADC, whislrias the bias to within

the resolution of the ADC and thus reduces the variance. Mervéhe resolution of the
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ADC limits the accuracy of the bias estimate, especiallé bias value falls in-between

ADC quantization bins.
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Figure 4.2: shows the Log Squared Error of the mean bias atgin (a) and the Relative
Standard Deviation of the estimates in (b).

For the gain and bias precision, the ratio%f stayed at a value of 0.5 for all four
cases. To test thdfects of a changing ratio, the simulation was repeated witmatant<
value of 100 and four dierentAK values of 25, 50, 100 and 200. The same RSD plots were
generated for the gain and bias estimates and the resukb@ne in Figure 4.3. The gain
RSD plot in Figure 4.3(a) shows the precision feated by the ratio o#% with a higher
value resulting in a lower amount of RSD and better estimegeipion. The bias RSD plot
in Figure 4.3(b) shows that the precision improves muchlquiwhen% is larger. At data
sets greater than 1@ size, the bias estimate precision is not significanfigcted by the
changing ratio. For both the gain and bias estimates, thette3ils were examined and

both the gain and bias showed no change in accuracy fi@reint ratios of%.

The S3NUC method was applied in a down-array configuratiositaulate NUC
estimation on two pairs of simulated data sets. The firstgaulated an ideal, uniform

source field. The data sets each had 20,000<L238 pixel images. The length of the data
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Figure 4.3: shows the Relative Standard Deviation of the gafimates in (a) and the bias
estimates in (b) over fferent ratios of:.

sets of 20,000 was chosen to drive the precision for the gaimnbsingle digits and for
the bias, below triple digits according to Figures 4.1 ar&d A.gain screen was generated,
comprised of a checkerboard offféirent gain values with a minimum value of 50 and a
maximum of 100. The photocount matrices were generated tisensame Poisson number
generator from the previous simulated data.

Each matrix of generated photocounts was multiplied byriegain matrix, summed
with the bias value and the matrix of generated noise vallies.process was repeated for
each frame in each data set. With each data set, the meaane@riand skewness were
calculated along the set of 20,000 frames for each individation. Once all necessary
moments were calculated, Equations (3.49)-(3.53) were tsestimate the original gain,
bias, photocount, and noise variance values. The truev&duéhe bias, mean photocounts

and noise variance used in this simulation are listed inerdul.

After running the simulation, the fixed pattern estimatevmied by the S3NUC
equations was compared to the original gain pattern. Thet R@an Squared Error

(RMSE) of the estimates were 1.6783 courfiftmm the true values. The two dimensional
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Table 4.1: Values for Simulation

Parameter name Value
B 1000
K 25
AK 25
o2 1

correlation cofficient between the estimates and the truth was 0.9971, intjcthat the
gain estimate’s shape was a good match to the true pattecnemrs

To verify that the S3NUC method does not require a uniformr@field to produce
accurate results, the same simulation was repeated witin-amiform mean photocount.
The non-uniform source field was implemented with a ¥2828 pixel image that was
normalized to have the same mean photocount of 25 as theopseumhiform source. All
other parameters, including the gain screen remained lgxhet same as the previous
simulation run.

The S3NUC method produced an estimate of the gain pattetmémcompared to
the true gain pattern. The RMSE of the estimate was 1.7198tsaff of the truth and the
correlation co#ficient was 0.9969. The results show that with a non-uniforores® the
S3NUC method was able to produce an accurate estimate chtheattern. The precision
did suter compared to the uniform source field, but not significastly The LSE images
of the gain estimates to the true gain pattern are shown mré&ig.4 with the results from
the uniform data set in (a) and the nonuniform set in (b). €hae some visible signs
of the original source image, or ghosting, that féeeting the accuracy of the estimates
from the nonuniform data set. In the nonuniform source siiom, AK is constant and

K is changing over the image, givingffirent ratios of% and thus dterent degrees of
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precision over the image. The changing precision manifestf as the ghosting seen in

Figure 4.4(b).
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Figure 4.4: shows the LSE images of the gain estimates toubeyain pattern. The image
in (a) is the LSE image of the gain estimate from the data s#t thie uniform source

field and (b) is the LSE image from the nonuniform data set. [@Mhiere is some residual
checkerboard pattern in these images, it should be notédndamount of error is very
small.

To further examine the method’s performance, the bias astisnfrom both the
uniform and nonuniform data were compared. The RMSE for thiéotm case was
204.1847 and the nonuniform case was 260.0308. Figure dvessthhe LSE images of the
bias estimates to the true bias value. The results from tlierandata are in Figure 4.5(a)
and from the non-uniform data are in Figure 4.5(b). Exangrilre results, the estimates
from the non-uniform data in Figure 4.5(b) have visible sighghosting in the LSE image.
The presence of ghosting matches with the prediction thiaaaging photocount willffiect

the precision and accuracy of the bias estimate as showigind-4.2.
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Figure 4.5: shows the LSE images of the bias estimates toubebtas value. The image
in (a) is the LSE image of the bias estimate from the data géttive uniform source field
and (b) is the LSE image from the nonuniform data set. Ghgssipresent due to the bias
estimate beingféected by the changing mean photocount as shown in Figure 4.2

To complete the S3NUC process, 100 frames from the nonumifdata set was
corrected using the estimated gain and bias values fromritieron data set. The mean
value of the corrected images had a range from 25.0183 t®B28.2 The 100 frames
were averaged and the resultant image shows no discerngi¢edcs the gain pattern. The
averaged image had a mean of 25.1321, close in value to thmarimean of 25. The
RMSE of the average image with the original nonuniform seureld was 3.1342. Both
the single corrected frame and the averaged image showmandse because S3NUC
does not perform any filtering on the noisy input images. Fegu6 shows an uncorrected
frame in (a), a single corrected frame in (b), and the aveiragge of 100 corrected frames
in (c). Both the corrected frame and the average correctegjenshow that S3NUC is
capable of removing fixed pattern noise in FPA read-out datagua static scene as a

calibration source.
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Figure 4.6: displays an uncorrected frame from the nonumifdata set in (a), a single
frame S3NUC corrected using the results from the uniforra dat in (b), and the average
of 100 S3NUC corrected frames in (c).

The corrected frames were also used to measure the amowerhaining noise after
S3NUC. With the 100 frames, each frame had the previous frarbgacted from it. The
99 difference frames were reshaped into a vector of values with a nfee.231x 107.
The mean is close in value to zero which corresponds to the imeran AWGN. The
standard deviation of the vector of values was 7.0769, taitggn the value of 1 used to
generate the AWGN. This indicates that S3BNUC removes sygtemoise by exploiting
random noise, with a sidefect of adding some random error.

4.2.2 CCD Camera Results.

Several data sets were collected with a CCD camera in the fsesien as the CMOS
data to test the S3NUC approach. The data collected were iiuarinated wall. The
different intensities were achieved by adjusting the lensaristy the light being passed
onto the array. 10,000 images, each 64480 pixels large, were taken for each data set.
The frames were processed with the same algorithm desadnb®ection 3.4. Figure 4.7

shows the gain estimates in (a) and the bias estimates in (b).

The standard deviation of the gain values wa§@4 compared to the mean gain value
of 3.160. Similarly, the bias standard deviation wag/& compared to the mean value

of 9.407. With the CCD data sets, the standard deviations werdesniaan the mean
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Figure 4.7: shows the gain pattern estimate from 10,000 Q@&ges in (a), and bias
pattern estimate in (b)

value indicating an acceptable degree of precision. Boith @ad bias estimates exhibit a
pattern of the top right corner having higher values and titeon left having lower values
compared to the rest of the estimates. The probable causmismform lighting being
exacerbated by the long data sets. Additionally, there igresf ghosting in the gain
and bias estimates. This ghosting is from thiedent ratios o% caused by the constant
AK from the lens aperture changing and the non-unifé¢nfrom the illuminated wall.
However, the pattern exhibited in the estimates is gracwhha&ar uniform in value. Based
on that fact, the camera was suspected of having NUC appligdtiring manufacturing.
To verify that hypothesis, the integration time of the caaneas increased to over 60
seconds to draw out any systematic noise. The resultanteirslagwn in Figure 4.8 was
clear enough to show three solvent evaporative spots leftfovm the FPA manufacturing.
The ability to see the spots indicates that some form of NUE pvaviously applied to the
camera and thus, no systematic noise was observed. Witkribatedge, an application

of SBNUC could be used for checking the performance of NUCamufiacturing.
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Figure 4.8: shows an image taken by the CCD camera with agratien time of 67.1
seconds. The image does not have any visual signs of fixedrpatbise. Instead, the
image is clear enough to see three dark spots from solvepoesion left over from
manufacturing.

4.3 Variation Tracking Testing

4.3.1 Simulation Testing.

To examine the ability of the algorithm to track gain and hiagation, a cross-array
variation tracking implementation was applied to simulatiata. Each frame of data is
128 pixels square, for 16384 pixels total. With this manyadaodints, the variance plot
in Figure 4.1 indicates the results of the gain estimatesldhmave less than one unit of
variance. Two sets of data were created adhering to the nmoégjuation (3.1) with 100
frames in both data sets. In this simulation, the gain ansl \méues were varied by frame
rather than held at a constant values. Each frame had the ga@imand bias across the
array and the values changed frame to frame. Specific gaibiasdectors were created
to test diferent variation types. Both sets of data for each trial usedame gain and bias
vectors.

In a cross-array configuration, the mean, variance, and rsk&svvalues were

calculated from all the pixel values in a single frame. Thewmweat values in one frame
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from the first set of data was combined with the moments froemtlatching frame in the
second set of data in the S3NUC equations to produce gainiasestimates for the entire
simulated array. The process was repeated for each pagroks to produce estimates of
the gain and bias variation behaviors as the true gain arsdi®ee changing. The vectors
were plotted over frame number to show the variation oveetim

In the first round of simulation, the vector of gain estimaft@sn the cross-array
variation tracking algorithm was plotted against the traengrector for 4 separate cases.
The results from all four cases are shown in Figure 4.9. Infitisé case, the gain was
constant, in the second case, the gain was linearly denggasithe third case, the gain

was sinusoidal, and in the fourth case, the gain was consttimperiodic dips.
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Figure 4.9: shows simulated gain variation estimates coegpto the true gain in four
different cases. The case in (a) is a constant gain value, (bhesaall decreasing situation,
(c) has a sinusoidal gain, and (d) has a periodic dip in the. gai

In all four plots, the estimates show minor random variatidnle closely following
the true trend of the gain values. The results indicate thadretion tracking analysis

can be used to isolate gain variatiofieets that could be present in various data sources.
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Furthermore, variation tracking analysis can be used teraehe the source of some
systematic ffects. The periodic dip in the gain in Figure 4.9(d) is indejseTt of variation
in the bias and the algorithm can verify the independence.

To test the capability of the variation tracking to distimgjubetween trends in the gain
and bias, the simulation was repeated for a periodic dipargtin and a constant bias. The
resultant estimates are shown in Figure 4.10(a) and (c)n Teesimulation was reversed,
with the gain being constant and the bias exhibiting a paridgh. Those results are shown
in Figure 4.10(b) and (d). In both sets of results, the edemalosely follow the real gain
and bias trends including correctly identifying the sowtthe periodic dips. The two sets
of results show that the variation tracking algorithm isafalp of distinguishing between

differences in the gain and bias trends.
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Figure 4.10: shows simulated gain and bias estimates caaparthe true values in two
separate cases. The case in (a) and (c) is one with the thénaaimg periodic dips and
the bias is a constant value. The second case in (b) and {® ieverse where the gain is

constant and the bias has periodic dips.
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The gain trends in both data sets must be closely aligneteyf are not, the S3NUC
equations will produce erroneous results due to the assomibtat the global values are
the same in the frame pair. A simulation was repeated in theesaanner as described
above with four diferent cases where the gain between the two sets of datafmeqi.
The estimates are shown in Figure 4.11 in a solid line alodg #ie two true gain values
in different dashed lines. In the first case, shown in Figure 4.14¢#) gains are constant
but have diferent values. In the second, (b), and third, (c), cases,dhes @gre sinusoidal
but have either a dierent amplitude or are out of phase respectively. In thetliozase in
(d), the gains have a linear trend but the first set of data hasvarse trend to the gain in

the second set.
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Figure 4.11: shows the gain estimates compared to the tiue wrafour cases when the
gain in the two data sets are not the same. The case in (a) i3 thbegain is constant
but at two diferent values. The cases in (b) and (c) show a sinusoidal gait lolfferent
amplitudes or dferent phases respectively. The case in (d) is where the gdimearly
increasing in one set of data and linearly decreasing atatime sate in the second.

All four sets of results in Figure 4.11 show that if there isifiedence between the

gains in the two data sets, the gain estimates from the i@rittacking algorithm will not
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be accurate. Each set shows that as tifier@ince in the gains increases, the accuracy of
the estimates decreases. In the fourth case in (d) with tyo$ipg gain trends, as the
simulation is allowed to continue, the gain estimates wplbr@ach zero and eventually
become negative. While zero and negative gain estimatesrezeeous results, they do
indicate that there is afilerence in the true gains between the two data sets.

While the gain estimates themselves are inaccurate for atcdrad gain trends, in
each case, the gain estimates are indicative of the gaid irethhe data set with a higher
mean photocount. The relationship between the estimategan from the more intense
data set is especially apparent in the third and fourth setafits in Figure 4.11 seenin (c)
and (d). The reason for the relationship comes from the ator of Equation (3.49) where
the subtractions are removing all variables except for the,&, and the mean photocount
difference AK, then dividing to solve fo6. Because of the relationship betwetk and
G, the gain trend is dependent on the more intense data set WKeis present.

4.3.2 CMOS Camera Results.

To analyze the CMOS camera for variation, two smaller dataafel 000 images each
were used for analysis. The moments for the cross-arraygroafion were computed
for each frame. From the moments, the gain and bias estimatescalculated using the
S3NUC moment equations. The calculations were repeatedimset of a thousand frame
pairs. The image size of 522512 pixels ensured there werefstient samples to achieve
a precise estimate for all parameters. The gain and biasyvalare plotted over the frame
number and the results are shown together in Figure 4.12kethain vector in (a) and the

bias in (b).

The gain variation tracking shows that there significanbglagain fluctuations in
the first 500 frames of the CMOS data. After 500, the gain Bislsi at a value around
2 x 107° digital counts per photocount. There is some noise presetietrend but over

all the estimates show a clear trend in the global gain valiies bias trend is much more
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Figure 4.12: shows the estimated variation trends in CMQS§ deer time for the gain in
(a) and bias in (b)

stable and shows a very clear, approximate linear decreasdime. Both the gain and
bias trends are a result of the camera’s active cooling aicige steady-state temperature
around frame 500.

4.3.3 CCD Camera Results.

Data collected from the CCD camera was analyzed for vanatidghe same method
as the CMOS data. 1000 pairs of frames were collected angzathlising the moment
equations to produce vectors for the gain and bias over firhe.frames were 648 480
pixels in size, ensuring an adequate sample size to prodacese estimates. The gain and
bias vectors were plotted over frame number in Figure 4.1B thie gain vector in (a) and

the bias in (b).

Neither the gain nor bias vectors show the same stable trieselreed in the CMOS
data from Figure 4.12. The gain vector slowly drops over tand then, at approximately
frame 700, jumps back up in value. The bias exhibits a sinriéard of falling values over
time then a jump up in value at approximately frame 700. Th&tian in both the gain
and bias are a result of the camera firmware compensatinigdontl éfects as this camera

did not have active cooling like the CMOS camera. The vanatiacking algorithm shows
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Figure 4.13: shows the estimated variation trends in CCB datr time for the gain in (a)
and bias in (b)

that it can produce trends in the gain and bias that are itidécaf compensation features
in the cameras. But these trends may not be precisely aecduatto dfsets in the gain
and bias values between the two data sets as discussedionSest 1.

4.3.4 LADAR Results.

In the TigerEye Flash LADAR data sets, the primary paramete&oncern was the
average gain of the system over time, as the TigerEye syst&noivn to have systematic,
temporal gain variation. To collect two data sets dfatent intensities from the LADAR
system, a filter was used on the laser aperture to attenwapmiter output. To capture the
change in power, a target was set up in the near-field rangepx@mately 10 meters from
the camera aperture. The target needed to fill a majorityeoFtald of View (FOV) so that
the data capture could collect the most returning laset.lifthe target did not fill a large
majority of the FOV, the background scene, with no returdasgr light, would dominate
the frame average. The average lack of returning laser\wgliid result in aAK value at

or near zero and the variation tracking algorithm would notky
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Data sets were taken with and without the filter. Both datswete read in, correctly
shifted using the marker frames, and analyzed in the samieotheis the CMOS camera
data. The first ten range gates, each with 20 frames, fromataeveere used providing 200
frames for analysis. The gain estimates showed a perichd twhich was expected based
on performance from prior research [28]. To quantitativadynpare the results, the gain
estimate was compared to the response from a pixel that wasnnihe target. Thef®
target pixel observes a nearly constant photocount, bufastad by a varying gain trend.
For a length of 200 frames, both the gain artidtarget pixel vectors were normalized by
their mean values and the error between the two was calduldtigure 4.14 shows the

normalized error plot over the 200 frames analyzed.
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Figure 4.14: shows the error between the normaliz&danget pixel’'s response and the
gain trend estimat in LADAR Data from the ASC TigerEye system

Across the 200 frames analyzed, the majority of the error betsveen 0 and 2
normalized units and had a mean 08389x 10-1°. The magnitude of the error indicates
that the gain trend matched th&-target pixel's response. There is some systematic noise

still present in the error shown in Figure 4.14. The remaraystematic noise is not from
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gain variation. Thus, the gain variations were accuratelgkied by the fi-target pixels
and estimated by the variation tracking algorithm.

The primary benefit in extracting the gain variation trenalsaiLADAR system is
that the variation fiects the returning laser pulse shapes which can adverskegtnainge
calculations. By extracting the gain variation trend, ih dse used to correct the data to

provide more accurate ranging results.

44



V. Conclusion

The methods of estimation in S3NUC have been shown to pradderate estimates
of the fixed pattern noise, or systematic error, in photattetd=PAs. The S3NUC method
uses statistical moments of a linear model with noise to@kphndom error to correct
systematic error in the output data. S3NUC can produce atzugsults when observing a
nonuniform source field, though performance dodgesslightly due to additional random
noise being introduced. The analysis was applied to dataatet with CMOS and CCD
based cameras and a estimate of the fixed pattern was usedédotdbe output data to
validate the algorithm.

S3NUC may also be used to track global variations in the gadhtdas of the output
data. The results show that the variation tracking impleatén can achieve accurate
results and can distinguish trends betwesdifiedent parameters when the trends are the
same between the two data sets used. The estimation acaufferg when the gain and
bias trends dfer between the two data sets. Simulation proved that themativalues
became erroneous then there wasftedence in the values between frame pairs. The same
analysis was applied to data collected with the CMOS, CCM, laADAR systems. The
results obtained from the collected data show clear tremtisei gain and bias. The trends
in the LADAR system match predictions made from prior reskan the area.

Based on the results obtained in the research containedJS3Movides a viable
method for correcting fixed patterns from photodetectoayarr SSNUC provides this
information without the need for perfectly uniform sourcegh known intensities that
are required for traditional NUC methods that preservearaéirically accurate results.
Furthermore, the equations for S3NUC can be applied to at@lyrtrack global variations
in systems that have variation issues. The combination e wertifies the S3NUC

method’s usefulness in image processing applications.
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5.1 FutureWork

In the research conducted, the S3NUC equations were dedawedtested for
applicability. Future work would entail a more thoroughtiteg of the algorithm to define
the limits and requirements for accurate results. Due toldbk of the necessary lab
equipment, the two-point NUC method was not tested withectdld data to compare
results to the S3NUC results. Further testing with colleatiata is necessary before
implementation in a real-world environment.

During derivation, a method of using a fourth order momemntess kurtosis, to
eliminate the need for two data sets was analytically prokenwever, testing in simulation
proved that the excess kurtosis value over a finite set hadtggb variation that accurate
gain and bias estimates were impossible to achieve witmoptactically large data sets.
Future research could include further examination of hawdeof a data set would be

required or if there is another use for the excess kurtosiatem.
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